

Spring Meeting Giovani Ricercatori

GUIDA ALLA RANDOMIZZAZIONE MENDELIANA: perché e come applicarla

Federica Galimberti

IRCCS MultiMedica Sesto San Giovanni (MI)

WORKSHOP: "Come approcciarsi ai test statistici: road to Mendelian Randomization"

TABLE OF CONTENTS

WHY From observational to genetic epidemiology

WHAT Main features of a MR approach

HOW To perform MR analyses

Medical Research

One of the major aims of medical research is to identify exposures (E), also called risk factors or intermediate phenotypes, which are causal to the manifestation of a specific outcome (O), such as disease initiation, disease progression, or response to therapy (efficacy and safety).

«Gold Standard»

The optimal way to answer questions of cause-effect relationship is to design randomized controlled trials (RCTs), the "gold standard" for the empirical testing of a hypothesis. Here, randomization ensures that study groups are comparable in all characteristics, except for the exposure of interest.

Expectations vs Reality

Efficacy

Effectiveness

Researchers observe the effect of a risk factor, treatment or other intervention without changing who is or isn't exposed to it. Here, study groups usually differ in not only the exposure of interest but also in several observed and unobserved characteristics.

(association only)

Researchers observe the effect of a risk factor, treatment or other intervention without changing who is or isn't exposed to it. Here, study groups usually differ in not only the exposure of interest but also in several observed and unobserved characteristics.

(association only)

How to recreate randomization in a real-life setting?

A variable G that either alter the level of, or imitate the biological effects of, a modifiable biomarker that is causal in disease

Genetics

Mendel's laws of inheritance

I. Law of segregation (Randomization)

During gamete formation, the alleles for each gene segregate from each other so that each gamete carries only one allele for each gene

Law of independent assortment (⊥ from confounders)

Genes of different traits can segregate independently during the formation of gametes

Gregor Mendel the Father of Modern Genetics

Genetics

Mendel's laws of inheritance

I. Law of segregation (Randomization)

During gamete formation, the alleles for each gene segregate from each other so that each gamete carries only one allele for each gene

Law of independent assortment (⊥ from confounders)

Genes of different traits can segregate independently during the formation of gametes

Genetic approach (causal estimate) Random distribution of alleles Control Carrier Confounders (C) evenly distributed Incidence of a disease

Genetic Epidemiology

Mendelian Randomization approach

In the Mendelian Randomization study design genetic variants following Mendelian inheritance are used as instrumental variables. To use the Mendelian Randomization principle and instrumental variable analysis to draw conclusions on causal effects, there are three key assumptions that must be fulfilled:

- 1. RELEVANCE: IV must be reproducibly and strongly associated with the exposure
- 2. EXCHANGEABILITY: IV must not be associated with confounders
- 3. EXCLUSION RESTRICTION: IV must be only associated with the outcome through the exposure

Mendelian Randomization approach: PROs and CONs

Analogous to a RCT

Limits the presence of confounding

Can study exposures that are expensive or difficult to measure

Can assess causality of risk factors for which interventions are not available

Removes the possibility of reverse causation

Lack of suitable genetic variants and potential weak instrument bias

Pleiotropy

Linkage disequilibrium

3

5

Canalization / developmental compensation

Causal estimates are often overestimated

Polygenic Risk Scores

GWAS Summary Statistics estimate the effect size (β) of the association of variants (SNPs) with a trait of interest

- Select SNPs (e.g. p<5x10⁻⁸, r²<0.2)</p>
- Sum of the effects of n SNPs, based on the estimated SNP effect sizes (β)

where x_{ij} is the genotype for the *i*th individual and *j*th SNP (usually encoded as 0, 1 or 2 for the effect allele dosage)

Polygenic Risk Score

A collection of variants that when combined into a score are predictive of an individual's genetic predisposition to a trait

Manhattan plot of CAD additive meta-analysis results

Lambert SA et al, Hum Mol Genet 2019

Age

Mendelian Randomization approach: PROs and CONs

Analogous to a RCT

Limits the presence of confounding

Can study exposures that are expensive or difficult to measure

Can assess causality of risk factors for which interventions are not available

Removes the possibility of reverse causation

Lack of suitable genetic variants and potential weak instrument bias

Pleiotropy

5

Linkage disequilibrium (LD)

Canalization / developmental compensation

Causal estimates are often overestimated

5

CONs

Key analytic choices in performing a MR analysis

What is the aim of the Mendelian randomization investigation?

To assess the causal role of an exposure

Priorities should be:

- validity of the instrumental variable assumptions
- precision and relevance of the gene—outcome associations

To evaluate the quantitative impact of an intervention on the exposure In addition to the above, extra priorities should be:

- how well the genetic variant proxies the intervention
- whether genetic analyses are conducted in a relevant population,
- linearity and homogeneity of relationships between variables

Note: estimate typically represents impact of lifelong change in the exposure

Should I perform a one- or a two-sample investigation?

\	,	•		
One-	sample	Two-sample		
Advantages:	Concerns:	Advantages:	Concerns:	
- Harmonization	- Weak	- Power	- Similarity of	
- Subgroup analyses	instrument bias	- Transparency	samples	
- BUT difficult to find	single relevant sample	- Easier practica	lly	

Burgess S et al, Wellcome Open Res 2020; 4:186

Mendelian Randomization Analysis: Data source

ONE-SAMPLE MR: genetic variants, exposure, and outcome are measured in the same individuals

TWO-SAMPLE MR: variant-exposure associations are estimated in one dataset, and variant-outcome associations are estimated in a second dataset

IV assumption	One-sample MR	Two-sample MR
1 °	The partial F statistic and partial r squared, or risk difference	Variants are associated with the risk factor in a large genome-wide study
2°	Covariate balance tests and bias Component plots. Adjusting for principal components of population stratification	Evidence from large genome-wide association studies on the association of the genetic variants used as instruments with other baseline covariates
3 °	Biological knowledge, tests of association of the genetic variants and potential alternative mediating pathways	Evidence from large genome-wide association studies that the genetic variants associate with alternative pathways. MR Egger test for pleiotropy, Cook's distance evaluation of outliers

Mendelian Randomization Analysis: Data source

INDIVIDUAL-LEVEL DATA: genetic and phenotype (exposure and outcome) measures for each individual in the study

SUMMARY-LEVEL DATA: genetic association estimates from regression of the exposure or outcome on a genetic variant; several large consortia have made such estimates publicly available for hundreds of thousands of variants

Consortium name	Description	Sample size
BCAC	Breast cancer	256,123
CARDIoGRAMplusC4D	Coronary artery disease and myocardial infarction	184,305
CKDGen	Chronic kidney disease	111,666
DIAGRAM	Diabetes	159,208
EAGLE	Antenatal and early life and childhood phenotypes	47,541
EGG	Early growth	153,781
GIANT	Height, BMI, and other adiposity traits	693,529
GLGC	Global lipids genetics consortium	331,368
ISGC	Stroke	84,961
MAGIC	Glucose and insulin related traits	224,459
PGC	Psychiatric genetics, alcohol and tobacco, and other related traits	>500,000
SSGAC	Educational attainment and well-being	293,723

Davies NM et al, BMJ 2018; 362 :k601

Key analytic choices in performing a MR analysis

Bi

a

How to select genetic variants?

What sensitivity and supplementary analyses should I perform?

ologically driven pproach	If there are genetic variants having biological relevance to the exposure then consider performing an MR analysis using these variants only. Advantages: - Instrumental variable assumptions more plausible - Relevance to intervention often more clear Concerns: - Low power - Results sensitive if locus is pleiotropic Sensitivity analyses: - Single locus: colocalization. Multiple loci: assess heterogeneity - Consider positive and negative control outcomes
tatistical pproach	If such variants are not available then consider performing an agnostic polygenic MR analysis. Advantages: Concerns: - Can use robust methods - Pleiotropy is likely Sensitivity analyses: - Assess heterogeneity: statistical test and graphically (e.g. scatter plot) - Perform a range of robust methods making different assumptions - Check genetic associations with variables on pleiotropic pathways - Liberal and conservative choices of variants, leave-one-out analyses - Conduct relevant subgroup analysis

Key analytic choices in performing a MR analysis

Polyunsaturated fatty acids and risk of anorexia nervosa: A Mendelian randomization study

Table 1: Summary statistics of plasma phospholipid levels of polyunsaturated fatty acids-raising genetic variants.

					Effect size estimates for PUFAs ^a			UFAs ^a	Effect size estimates for anorexia nervosa ^b		
PUFA	SNP	Chr	Effect allele	Other allele	EAF	β ^e	SE	р	β	SE	р
	rs10740118	10	G	С	0.56	0.248	0.043	8.08*10 ⁻⁹	0.024	0.014	0.076
Linoleic acid (LA, 18:2n6)	rs174547	11	С	Т	0.32	1.474	0.042	4.98*10 ⁻²⁷⁴	0.009	0.014	0.547
	rs16966952	16	G	Α	0.69	0.351	0.044	1.23*10 ⁻¹⁵	0.030	0.015	0.037
Arashidania asid (AA, 00:4n6)	rs174547	11	Т	С	0.68	1.691	0.025	3.00*10 ⁻⁹⁷¹	-0.009	0.014	0.547
Arachidohic acid (AA, 20.410)	rs16966952	16	G	Α	0.69	0.199	0.031	2.43*10 ⁻¹⁰	0.030	0.015	0.037
α-Linolenic acid (ALA, 18:3n3)	rs174547	11	С	Т	0.33	0.016	0.001	3.47*10 ⁻⁶⁴	0.009	0.014	0.547
Eicosapentaenoic acid (EPA,	rs3798713	6	С	G	0.43	0.035	0.005	1.93*10 ⁻¹²	-0.014	0.014	0.291
20:5n3)	rs174538	11	G	Α	0.72	0.083	0.005	5.37*10 ⁻⁵⁸	0.001	0.014	0.955
Docosapentaenoic acid (DPA, 22:5n3)	rs780094	2	Т	С	0.41	0.017	0.003	9.04*10 ⁻⁹	-0.024	0.014	0.076
	rs3734398	6	С	Т	0.43	0.040	0.003	9.61*10 ⁻⁴⁴	-0.015	0.014	0.264
	rs174547	11	Т	С	0.67	0.075	0.003	3.79*10 ⁻¹⁵⁴	-0.009	0.014	0.547
Docosahexaenoic acid (DHA, 22:6n3)	rs2236212	6	G	с	0.57	0.113	0.014	1.26*10 ⁻¹⁵	0.013	0.014	0.355

Chr, chromosome; EAF, effect allele frequency; PUFA, polyunsaturated fatty acid; SE, standard error; SNP, single-nucleotide polymorphism

^a Summary statistics for PUFA from "PLoS Genet 2011;7(7):e1002193. doi: https://doi.org/10.1371/journal.pgen.1002193" and "Circ Cardiovasc Genet 2014;7 (3):321-31. doi: https://doi.org/10.1161/CIRCGENETICS.113.000208".

^b Summary statistics for anorexia nervosa (16,992 cases, 55,525 controls) from "Nat Genet 2019;51(8):1207–14. doi: https://doi.org/10.1038/s41588-019-043 9-2".

^c Expressed as % of total fatty acids.

Nomura M et al. J Affect Disord 2023; 330:245-248

Mendelian Randomization Analysis: Estimation Methods

Category	Core IV assumption relaxed	Individual-level data	Summary data
'Basic' MR method	None	Wald ratio estimation, <u>2SLS</u> regression analysis ^a	Wald ratio estimation, <u>IVW^{a,37}</u>
Weak instrument robust methods	IV1; allows for weak instruments	LIML ²⁶ , allele score approaches ²⁶	MR RAPS ⁸⁷ , debiased IVW ¹⁸⁷ , MR GRAPPLE ⁸⁸ , NOME adjustment ¹⁸⁸ , two-sample AR ¹⁸⁹
Outlier/variant selection and removal	IV3; allows for balanced/sparse pleiotropy	Weighted median ¹⁹⁰	Weighted median ^{a,82}
Outlier/variant selection and removal	IV3; allows for (some) directional pleiotropy	sisVIVE ⁷⁰ , adaptive LASSO ⁷¹ , weighted mode ¹⁹⁰	Weighted mode ^{a,83} , MR LASSO ⁸⁴ , Steiger filtering ^{a,93} , Welch-weighted Egger ⁹⁴ , contamination mixture ¹⁹¹ , GSMR ⁷⁹ , MR-Clust ¹⁹² , Bayesian MIMR ¹⁹³ , CIV ⁷²
Outlier/variant adjustment	IV3; allows for balanced pleiotropy	Limited approaches currently available	MR RAPS ⁸⁷ , MRCIP ¹⁹⁴
Outlier/variant adjustment	IV3; allows for (some) directional pleiotropy	Limited approaches currently available	MR TRYX ⁸⁵ , MR Robust ⁸⁴ , MR CAUSE ⁸⁹ , MR PRESSO ⁸⁶ , MR GRAPPLE ⁸⁸ , MRMix ¹⁹⁵ , MR-LDP ¹⁹⁶ , IMRP ¹⁹⁷ , regularization ¹⁹⁸ , MR-PATH (see preprint ¹⁹⁹)
Estimation adjustment	IV3; allows for balanced pleiotropy	Limited approaches currently available	Debiased IVW ¹⁸⁷
Estimation adjustment	IV3; allows for (some) directional pleiotropy	Constrained IVs ⁷² , multivariable MR ⁷³	MR Egger ⁹⁰ , multivariable MR ^{73,91} , MR Link ²⁰⁰ , hJAM ²⁰¹ , GIV ²⁰² , Bayesian network analysis ²⁰³ , BMRE ²⁰⁴ , BayesMR ²⁰⁵
Environmental control adjustment	IV3; allows for (some) directional pleiotropy	MR GxE ^{75,76} , MR GENIUS ⁷⁷	Limited approaches currently available

2SLS two-stage least-squares; IVW inverse variance weighted

Mendelian Randomization Analysis: Estimation Methods

Mendelian Randomization Analysis: Further extensions

MR MEDIATION ANALYSIS

NON-LINEAR MR

Mendelian Randomization Analysis: Further extensions

MR MEDIATION ANALYSIS

NON-LINEAR MR

Mendelian Randomization Analysis: Further extensions

BIDIRECTIONAL MR

MULTIVARIABLE MR

MR MEDIATION ANALYSIS

NON-LINEAR MR

Mendelian Randomization Studies in PubMed

Savla, J, Neeland, IJ, Curr Cardiovasc Risk Rep 2018; 12:2

FOCUS

COS'È UNO STUDIO DI RANDOMIZZAZIONE MENDELIANA E QUALI SONO LE APPLICAZIONI IN AMBITO DI DISLIPIDEMIE What is a Mendelian randomization study and what are the applications in the field of dyslipidemias

FEDERICA GALIMBERTI¹², ELENA OLMASTRONI¹²

 ¹Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy;
²MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, CB1 8RN Cambridge, United Kingdom

ANNO II N. 2/2020

Spring Meeting Giovani Ricercatori

Federica Galimberti

IRCCS MultiMedica Sesto San Giovanni (MI)

federica.galimberti@multimedica.it

WORKSHOP: "Come approcciarsi ai test statistici: road to Mendelian Randomization"

IDENTIFICARE GLI ELEMENTI ESSENZIALI DI UNO STUDIO DI RANDOMIZZAZIONE MENDELIANA:

- \checkmark Hypothesis to be tested \rightarrow Exposure(s) and Outcome(s)
- \checkmark Instrumental Variable(s) \rightarrow Single or multiple genetic variants
- ✓ Individual- or Summary-level data
- ✓ One- or Two-sample MR
- ✓ Estimation Method(s)

WORKSHOP: "Come approcciarsi ai test statistici: road to Mendelian Randomization"