GUIDA ALLA RANDOMIZZAZIONE MENDELIANA:

 perché e come applicarlaFederica Galimberti
IRCCS MultiMedica
Sesto San Giovanni (MI)

WORKSHOP:"Come approcciarsi ai test statistici: road to Mendelian Randomization"

TABLE OF CONTENTS

WHY

From observational to genetic epidemiology

WHAT

Main features of a MR approach

HOW

03 To perform MR analyses

Medical Research

One of the major aims of medical research is to identify exposures (E), also called risk factors or intermediate phenotypes, which are causal to the manifestation of a specific outcome (O), such as disease initiation, disease progression, or response to therapy (efficacy and safety).

Once identified, causal risk factors can enable preventive measures and represent attractive therapeutic targets

«Gold Standard»

The optimal way to answer questions of cause-effect relationship is to design randomized controlled trials (RCTs), the "gold standard" for the empirical testing of a hypothesis. Here, randomization ensures that study groups are comparable in all characteristics, except for the exposure of interest.

Randomized trial

(causal estimate)

Confounders (C)
evenly distributed

External validity:

> Results may not always mimic real life treatment situation (e.g. inclusion / exclusion criteria; highly controlled setting)
$>$ Short follow-up
> Small sample analyzed
$>$ Ethical limitations

Incidence of
a disease

Expectations vs Reality

Efficacy

Observational Studies

Researchers observe the effect of a risk factor, treatment or other intervention without changing who is or isn't exposed to it. Here, study groups usually differ in not only the exposure of interest but also in several observed and unobserved characteristics.

Observational study

(association only)

Observational Studies

Researchers observe the effect of a risk factor, treatment or other intervention without changing who is or isn't exposed to it. Here, study groups usually differ in not only the exposure of interest but also in several observed and unobserved characteristics.

Observational study (association only)

Incidence of
a disease

How to recreate randomization in a real-life setting?

A variable G that either alter the level of, or imitate the biological effects of, a modifiable biomarker that is causal in disease

Genetics

Mendel's laws of inheritance

I. Law of segregation (Randomization)
During gamete formation, the alleles for each gene segregate from each other so that each gamete carries only one allele for each gene
2. Law of independent assortment (\perp from confounders)

Genes of different traits can segregate independently during the formation of gametes

Genetics

Mendel's laws of inheritance

I. Law of segregation (Randomization)
During gamete formation, the alleles for each gene segregate from each other so that each gamete carries only one allele for each gene
2. Law of independent assortment (\perp from confounders)

Genes of different traits can segregate independently during the formation of gametes

Genetic approach (causal estimate)

Genetic Epidemiology

Genetic approach

 (causal estimate)

Confounders (C)
evenly distributed

Incidence of a disease

Randomized trial

 (causal estimate)

Confounders (C)
evenly
distributed

Incidence of
a disease

Each polymorphism is allocated approximately randomly at the time of conception in a manner analogous to a long-term RCTs.

Genetic Epidemiology

Mendelian Randomization approach

In the Mendelian Randomization study design genetic variants following Mendelian inheritance are used as instrumental variables. To use the Mendelian Randomization principle and instrumental variable analysis to draw conclusions on causal effects, there are three key assumptions that must be fulfilled:

1. RELEVANCE: IV must be reproducibly and strongly associated with the exposure
2. EXCHANGEABILITY: IV must not be associated with confounders
3. EXCLUSION RESTRICTION: IV must be only associated with the outcome through the exposure

Mendelian Randomization approach: PROs and CONs

1 Analogous to a RCT

2 Limits the presence of confounding

3 Can study exposures that are expensive or difficult to measure

Can assess causality of risk factors for which interventions are not available

Removes the possibility of reverse causation

Polygenic Risk Scores

GWAS Summary Statistics

estimate the effect size (β) of the association of variants (SNPs) with a trait of interest
$>$ Select SNPs

$$
\text { (e.g. } \mathrm{P}<5 \times 10^{-8}, \mathrm{r}^{2}<0.2 \text {) }
$$

$>$ Sum of the effects of n SNPs, based on the estimated SNP effect sizes (β)

$$
\mathrm{PGS}=\sum_{j=1}^{n} x_{i j} \widehat{\beta}_{j}
$$

where $x_{i j}$ is the genotype for the ith individual and jth SNP (usually encoded as 0 , 1 or 2 for the effect allele dosage)

Polygenic Risk Score

A collection of variants that when combined into a score are predictive of an individual's genetic
 predisposition to a trait

Mendelian Randomization approach: PROs and CONs

1 Analogous to a RCT

2 Limits the presence of confounding

3 Can study exposures that are expensive or difficult to measure

Can assess causality of risk factors for which interventions are not available

Removes the possibility of reverse causation

CONs

OVERESTIMATED

Lifelong
exposure
exposure

Key analytic choices in performing a MR analysis

What is the aim of the Mendelian randomization investigation?

To assess the causal role of an exposure

Priorities should be:

- validity of the instrumental variable assumptions
- precision and relevance of the gene-outcome associations

To evaluate the quantitative impact of an intervention on the exposure
In addition to the above, extra priorities should be:

- how well the genetic variant proxies the intervention
- whether genetic analyses are conducted in a relevant population,
- linearity and homogeneity of relationships between variables

Note: estimate typically represents impact of lifelong change in the exposure

Mendelian Randomization Analysis: Data source

ONE-SAMPLE MR: genetic variants, exposure, and outcome are measured in the same individuals

TWO-SAMPLE MR: variant-exposure associations are estimated in one dataset, and variant-outcome associations are estimated in a second dataset
IV

assumption \quad\begin{tabular}{c}
One-sample MR

\quad

Two-sample MR
\end{tabular}

Mendelian Randomization Analysis: Data source

INDIVIDUAL-LEVEL DATA: genetic and phenotype (exposure and outcome) measures for each individual in the study

SUMMARY-LEVEL DATA: genetic association estimates from regression of the exposure or outcome on a genetic variant; several large consortia have made such estimates publicly available for hundreds of thousands of variants

Consortium name	Description	Sample size
BCAC	Breast cancer	$\mathbf{2 5 6 , 1 2 3}$
CARDloGRAMplusC4D	Coronary artery disease and myocardial infarction	$\mathbf{1 8 4 , 3 0 5}$
CKDGen	Chronic kidney disease	$\mathbf{1 1 1 , 6 6 6}$
DIAGRAM	Diabetes	$\mathbf{1 5 9 , 2 0 8}$
EAGLE	Antenatal and early life and childhood phenotypes	$\mathbf{4 7 , 5 4 1}$
EGG	Early growth	$\mathbf{1 5 3 , 7 8 1}$
GIANT	Height, BMI, and other adiposity traits	$\mathbf{6 9 3 , 5 2 9}$
GLGC	Global lipids genetics consortium	$\mathbf{3 3 1 , 3 6 8}$
ISGC	Stroke	$\mathbf{8 4 , 9 6 1}$
MAGIC	Glucose and insulin related traits	$\mathbf{2 2 4 , 4 5 9}$
PGC	Psychiatric genetics, alcohol and tobacco, and other related traits	$>\mathbf{5 0 0 , 0 0 0}$
SSGAC	Educational attainment and well-being	$\mathbf{2 9 3 , 7 2 3}$

Key analytic choices in performing a MR analysis

	How to select genetic variants? What sensitivity and supplementary analyses should I perform?
	If there are genetic variants having biological relevance to the exposure... then consider performing an MR analysis using these variants only. Advantages:
Biologically driven approach	- Instrumental variable assumptions more plausible - Relevance to intervention often more clear Concerns: - Low power - Results sensitive if locus is pleiotropic Sensitivity analyses: - Single locus: colocalization. Multiple loci: assess heterogeneity - Consider positive and negative control outcomes
	If such variants are not available... then consider performing an agnostic polygenic MR analysis. Advantages: Concerns: - Can use robust methods - Pleiotropy is likely
Statistical approach	Sensitivity analyses: - Assess heterogeneity: statistical test and graphically (e.g. scatter plot) - Perform a range of robust methods making different assumptions - Check genetic associations with variables on pleiotropic pathways - Liberal and conservative choices of variants, leave-one-out analyses - Conduct relevant subgroup analysis

Key analytic choices in performing a MR analysis

Polyunsaturated fatty acids and risk of anorexia nervosa: A Mendelian randomization study

Table 1: Summary statistics of plasma phospholipid levels of polyunsaturated fatty acids-raising genetic variants.

					Effect size estimates for PUFAs ${ }^{\text {a }}$				Effect size estimates for anorexia nervosa ${ }^{\text {b }}$		
PUFA	SNP	Chr	Effect allele	Other allele	EAF	β^{6}	SE	p	β	SE	p
Linoleic acid (LA, 18:2n6)	rs10740118	10	G	C	0.56	0.248	0.043	$8.08{ }^{\star} 10^{-9}$	0.024	0.014	0.076
	rs174547	11	c	T	0.32	1.474	0.042	$4.98{ }^{*} 10^{-274}$	0.009	0.014	0.547
	rs16966952	16	G	A	0.69	0.351	0.044	$1.23 * 10^{-15}$	0.030	0.015	0.037
Arachidonic acid (AA, 20:4n6)	rs174547	11	T	C	0.68	1.691	0.025	$3.00 * 10^{-971}$	-0.009	0.014	0.547
	rs16966952	16	G	A	0.69	0.199	0.031	$2.43{ }^{*} 10^{-10}$	0.030	0.015	0.037
α-Linolenic acid (ALA, 18:3n3)	rs174547	11	C	T	0.33	0.016	0.001	$3.47^{*} 10^{-64}$	0.009	0.014	0.547
Eicosapentaenoic acid (EPA, 20:5n3)	rs3798713	6	C	G	0.43	0.035	0.005	$1.93 * 10^{-12}$	-0.014	0.014	0.291
	rs174538	11	G	A	0.72	0.083	0.005	$5.37 * 10^{-58}$	0.001	0.014	0.955
Docosapentaenoic acid (DPA,22:5n3)	rs780094		T	C	0.41	0.017	0.003	$9.04 * 10^{-9}$	-0.024	0.014	0.076
	rs3734398	6	C	T	0.43	0.040	0.003	$9.61 * 10^{-44}$	-0.015	0.014	0.264
	rs174547	11	T	C	0.67	0.075	0.003	$3.79 * 10^{-154}$	-0.009	0.014	0.547
Docosahexaenoic acid (DHA, 22:6n3)	rs2236212	6	G	C	0.57	0.113	0.014	$1.26{ }^{*} 10^{-15}$	0.013	0.014	0.355

Chr, chromosome; EAF, effect allele frequency; PUFA, polyunsaturated fatty acid; SE, standard error; SNP, single-nucleotide polymorphism
${ }^{\text {a }}$ Summary statistics for PUFA from "PLoS Genet 2011;7(7):e1002193. doi: https://doi.org/10.1371/journal.pgen.1002193" and "Circ Cardiovasc Genet 2014;7 (3):321-31. doi: https://doi.org/10.1161/CIRCGENETICS.113.000208".
${ }^{\text {b }}$ Summary statistics for anorexia nervosa (16,992 cases, 55,525 controls) from "Nat Genet 2019;51(8):1207-14. doi: https://doi.org/10.1038/s41588-019-043 9-2".
${ }^{c}$ Expressed as \% of total fatty acids.

Mendelian Randomization Analysis: Estimation Methods

Category	Core IV assumption relaxed	Individual-level data	Summary data
'Basic' MR method	None	Wald ratio estimation, 2SLS regression analysis ${ }^{\text {a }}$	Wald ratio estimation, IVW ${ }^{\text {a }}$, ${ }^{\text {a }}$
Weakinstrument robust methods	IV1; allows for weak instruments	LIML ${ }^{26}$, allele score approaches ${ }^{26}$	MR RAPS ${ }^{87}$, debiased IVW ${ }^{187}$, MR GRAPPLE ${ }^{88}$, NOME adjustment 188, two-sample AR ${ }^{189}$
Outlier/variant selection and removal	IV3: allows for balanced/sparse pleiotropy	Weighted median ${ }^{190}$	Weighted median ${ }^{\text {a }} 82$
Outlier/variant selection and removal	IV3; allows for (some) directional pleiotropy	sisVIVE ${ }^{70}$, adaptive LASSO^{71}. weighted mode ${ }^{190}$	Weighted mode ${ }^{\text {a,83 }}$, MR LASSO ${ }^{84}$, Steiger filtering ${ }^{\text {a. } .3}$, Welch-weighted Egger ${ }^{94}$, contamination mixture ${ }^{191}$, GSMR 79, MR-Clust ${ }^{192}$, Bayesian MIMR ${ }^{193}, \mathrm{CIV}^{72}$
Outlier/variant adjustment	IV3; allows for balanced pleiotropy	Limited approaches currently available	MR RAPS ${ }^{87}$, MRCIP ${ }^{194}$
Outlier/variant adjustment	IV3; allows for (some) directional pleiotropy	Limited approaches currently available	MR TRYX ${ }^{85}$, MR Robust ${ }^{84}$, MR CAUSE ${ }^{89}$, MR PRESSO ${ }^{86}$, MR GRAPPLE ${ }^{88}$, MRMix 195, MR-LDP ${ }^{196}$, IMRP 197, regularization ${ }^{198}$, MR-PATH (see preprint ${ }^{199}$)
Estimation adjustment	IV3; allows for balanced pleiotropy	Limited approaches currently available	Debiased IVW ${ }^{187}$
Estimation adjustment	IV3; allows for (some) directional pleiotropy	Constrained IVs ${ }^{72}$, multivariable MR^{73}	MR Egger ${ }^{90}$, multivariable MR 7,99, MR Link ${ }^{200}$, hJAM ${ }^{201}, \mathrm{GIV}^{202}$, Bayesian network analysis ${ }^{203}$, BMRE 204, BayesMR ${ }^{205}$
Environmental control adjustment	IV3; allows for (some) directional pleiotropy	MR GxE ${ }^{75,76}$, MR GENIUS ${ }^{77}$	Limited approaches currently available

Mendelian Randomization Analysis: Estimation Methods

Mendelian Randomization Analysis: Further extensions

BIDIRECTIONAL MR

MULTIVARIABLE MR

MR MEDIATION ANALYSIS

NON-LINEAR MR

Mendelian Randomization Analysis: Further extensions

BIDIRECTIONAL MR

MULTIVARIABLE MR

MR MEDIATION ANALYSIS

NON-LINEAR MR

Mendelian Randomization Analysis: Further extensions

BIDIRECTIONAL MR

MULTIVARIABLE MR

MR MEDIATION ANALYSIS

NON-LINEAR MR

Mendelian Randomization Studies in PubMed

For more details...

focus
 COS'લ̀ UNO STUDIO DI RANDOMIZZAZIONE MENDELIANA e QUALI SONO LE APPLICAZIONI IN AMBITO DI DISLIPIDEMIE
 What is a Mendelian randomization study and what are the applications in the field of dyslipidemias
 FEDERICA GALIMBERTI ${ }^{12}$, ELENA OLMASTRONI ${ }^{12}$
 'Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy;
 ${ }^{2}$ MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, CBI 8RN Cambridge, United Kingdom

Spring Meeting Giovani Ricercatori

Federica Galimberti

IRCCS MultiMedica
Sesto San Giovanni (MI)

federica.galimberti@multimedica.it

WORKSHOP:"Come approcciarsi ai test statistici: road to Mendelian Randomization"

Lavoro a gruppi

IDENTIFICARE GLI ELEMENTI ESSENZIALI DI UNO STUDIO DI RANDOMIZZAZIONE MENDELIANA:

\checkmark Hypothesis to be tested \rightarrow Exposure(s) and Outcome(s)
\checkmark Instrumental Variable(s) \rightarrow Single or multiple genetic variants
\checkmark Individual- or Summary-level data
\checkmark One- or Two-sample MR
\checkmark Estimation Method(s)

